397 research outputs found

    Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound

    Get PDF
    Effective mechanical properties of fiber-reinforced composites strongly depend on the microstructure, including the fibers\u27 orientation. Studying this dependency, we identify the variety of fiber orientation tensors up to fourth-order using irreducible tensors and material symmetry. The case of planar fiber orientation tensors, relevant for sheet molding compound, is presented completely. Consequences for the reconstruction of fiber distributions and mean field homogenization are presented

    On the dependence of orientation averaging mean field homogenization on planar fourth-order fiber orientation tensors

    Get PDF
    A comprehensive study on the influence of planar fourth-order fiber orientation tensors on effective linear elastic stiffnesses predicted by orientation averaging mean field homogenization is given. Fiber orientation states of sheet molding compound (SMC) are identified to be in most cases approximately planar. In the planar case, all possible fourth-order fiber orientation tensors are given by a minimal invariant set of structurally differing planar fourth-order fiber orientation tensors. This set defines a three-dimensional body and forms the basis for a comprehensive study on the influence of a fiber orientation distribution in terms of a fourth-order tensor on homogenized stiffnesses. The methodology of this study is the main contribution of this work and can be adopted to analyze the orientation dependence of any quantity which is a function of a planar fourth-order fiber orientation tensor. At specific points inside the set of planar fiber orientation tensors, effective stiffnesses are calculated with selected mean field homogenization schemes. These schemes are based on orientation averaging of transversely isotropic elasticity tensors following Advani and Tucker (1987), which is explicitly recast as linear invariant composition in the fiber orientation tensors of second and fourth order of Kanatani third kind. A maximum entropy reconstruction of a fiber orientation distribution function based on leading fiber orientation tensors, enables a new numerical formulation of the Advani and Tucker average for the special planar case. Polar plots of Young’s modulus and generalized bulk modulus obtained by selected homogenization schemes are arranged on two-dimensional slices within the body of admissible fiber orientation tensors, visualizing the influence of the orientation tensor on the stiffness tensor. The orientation-dependence of the generalized bulk modulus differs significantly between selected homogenizations. Restrictions on the effective anisotropic material response caused by orthotropy of closure approximations are discussed

    Variety of fiber orientation tensors

    Get PDF
    Fiber orientation tensors are established descriptors of fiber orientation states in (thermo-)mechanical material models for fiber-reinforced composites. In this paper, the variety of fourth-order orientation tensors is analyzed and specified by parameterizations and admissible parameter ranges. The combination of parameterizations and admissible parameter ranges allows for studies on the mechanical response of different fiber architectures. Linear invariant decomposition with focus on index symmetry leads to a novel compact hierarchical parameterization, which highlights the central role of the isotropic state. Deviation from the isotropic state is given by a triclinic harmonic tensor with simplified structure in the orientation coordinate system, which is spanned by the second-order orientation tensor. Material symmetries reduce the number of independent parameters. The requirement of positive-semi-definiteness defines admissible ranges of independent parameters. Admissible parameter ranges for transversely isotropic and planar cases are given in a compact closed form and the orthotropic variety is visualized and discussed in detail. Sets of discrete unit vectors, leading to selected orientation states, are given

    Fiber orientation distributions based on planar fiber orientation tensors of fourth order

    Get PDF
    Fiber orientation tensors represent averaged measures of fiber orientations inside a microstructure. Although, orientation-dependent material models are commonly used to describe the mechanical properties of representative microstructure, the influence of changing or differing microstructure on the material response is rarely investigated systematically for directional measures which are more precise than second-order fiber orientation tensors. For the special case of planar orientation distributions, a set of admissible fiber orientation tensors of fourth-order is known. Fiber orientation distributions reconstructed from given orientation tensors are of interest both for numerical averaging schemes in material models and visualization of the directional information itself. Focusing on the special case of planar orientations, this paper draws the geometric picture of fiber orientation distribution functions reconstructed from fourth-order fiber orientation tensors. The developed methodology can be adopted to study the dependence of material models on planar fourth-order fiber orientation tensors. Within the set of admissible fiber orientation tensors, a subset of distinct tensors is identified. Advantages and disadvantages of the description of planar orientation states in two- or three-dimensional tensor frameworks are demonstrated. Reconstruction of fiber orientation distributions is performed by truncated Fourier series and additionally by deploying a maximum entropy method. The combination of the set of admissible and distinct fiber orientation tensors and reconstruction methods leads to the variety of reconstructed fiber orientation distributions. This variety is visualized by arrangements of polar plots within the parameter space of fiber orientation tensors. This visualization shows the influence of averaged orientation measures on reconstructed orientation distributions and can be used to study any simulation method or quantity which is defined as a function of planar fourth-order fiber orientation tensors

    On the Phase Space of Fourth-Order Fiber-Orientation Tensors

    Get PDF
    Fiber-orientation tensors describe the relevant features of the fiber-orientation distribution compactly and are thus ubiquitous in injection-molding simulations and subsequent mechanical analyses. In engineering applications to date, the second-order fiber-orientation tensor is the basic quantity of interest, and the fourth-order fiber-orientation tensor is obtained via a closure approximation. Unfortunately, such a description limits the predictive capabilities of the modeling process significantly, because the wealth of possible fourth-order fiber-orientation tensors is not exploited by such closures, and the restriction to second-order fiber-orientation tensors implies artifacts. Closures based on the second-order fiber-orientation tensor face a fundamental problem – which fourth-order fiber-orientation tensors can be realized? In the literature, only necessary conditions for a fiber-orientation tensor to be connected to a fiber-orientation distribution are found. In this article, we show that the typically considered necessary conditions, positive semidefiniteness and a trace condition, are also sufficient for being a fourth-order fiber-orientation tensor in the physically relevant case of two and three spatial dimensions. Moreover, we show that these conditions are not sufficient in higher dimensions. The argument is based on convex duality and a celebrated theorem of D. Hilbert (1888) on the decomposability of positive and homogeneous polynomials of degree four. The result has numerous implications for modeling the flow and the resulting microstructures of fiber-reinforced composites, in particular for the effective elastic constants of such materials. Based on our findings, we show how to connect optimization problems on fourth-order fiber-orientation tensors to semi-definite programming. The proposed formulation permits to encode symmetries of the fiber-orientation tensor naturally. As an application, we look at the differences between orthotropic and general, i.e., triclinic, fiber-orientation tensors of fourth order in two and three spatial dimensions, revealing the severe limitations inherent to orthotropic closure approximations

    Variety of Planar Fourth‐Order Fiber Orientation Tensors and Implications on Effective Elastic Stiffnesses

    Get PDF
    In this contribution, selected results from [1–3] are presented in a compact and simplified way. In addition, the variety of fiber orientation tensors is used to determine a maximum deviation of the direction-dependent Young\u27s modulus, which can arise if only second-order directional information is included in a specific meanfield homogenization. Focusing on the special case of planar fiber distributions, the variety of fiber orientation tensors identified in [1] is considered as a design space. This design space is completely explored for the orientation-averaging homogenization following [4], fixed material parameters and fixed fiber volume content. The possible directional dependence of the resulting effective stiffnesses is graphically presented using polar plots of the direction-dependent Young\u27s modulus. These polar plots are arranged on two-dimensional slices within the parameter space of planar fourth-order fiber orientation tensors. This gives a complete representation of the influence of the orientation tensor on the anisotropic stiffness tensor. Consequences of closure approximations, i.e., restriction to second-order directional information, are demonstrated and motivate measurement of fourth-order fiber orientation tensors

    Mechkit: a continuum mechanics toolkit in Python

    Get PDF
    Finish JOSS reviewThe research documented in this package and manuscript has been funded by the German Research Foundation (DFG) within the International Research Training Group "Integrated engineering of continuous-discontinuous long fiber-reinforced polymer structures" (GRK 2078/2). The support by the German Research Foundation (DFG) is gratefully acknowledged

    Quantum Computing for High-Energy Physics: State of the Art and Challenges. Summary of the QC4HEP Working Group

    Full text link
    Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural sciences and beyond, with the potential for achieving a so-called quantum advantage, namely a significant (in some cases exponential) speed-up of numerical simulations. The rapid development of hardware devices with various realizations of qubits enables the execution of small scale but representative applications on quantum computers. In particular, the high-energy physics community plays a pivotal role in accessing the power of quantum computing, since the field is a driving source for challenging computational problems. This concerns, on the theoretical side, the exploration of models which are very hard or even impossible to address with classical techniques and, on the experimental side, the enormous data challenge of newly emerging experiments, such as the upgrade of the Large Hadron Collider. In this roadmap paper, led by CERN, DESY and IBM, we provide the status of high-energy physics quantum computations and give examples for theoretical and experimental target benchmark applications, which can be addressed in the near future. Having the IBM 100 x 100 challenge in mind, where possible, we also provide resource estimates for the examples given using error mitigated quantum computing

    A worldwide survey on incidence, management and prognosis of oesophageal fistula formation following atrial fibrillation catheter ablation: The POTTER-AF study.

    Get PDF
    AIMS Oesophageal fistula represents a rare but dreadful complication of atrial fibrillation catheter ablation. Data on its incidence, management and outcome are sparse. METHODS AND RESULTS This international multicenter registry investigates the characteristics of oesophageal fistulae after treatment of atrial fibrillation by catheter ablation. A total of 553,729 catheter ablation procedures (radiofrequency: 62.9%, cryoballoon: 36.2%, other modalities: 0.9%) were performed at 214 centers in 35 countries. In 78 centers 138 patients (0.025%, radiofrequency: 0.038%, cryoballoon: 0.0015% (p<0.0001)) were diagnosed with an oesophageal fistula. Periprocedural data were available for 118 patients (85.5%). Following catheter ablation, the median time to symptoms and the median time to diagnosis were 18 (7.75, 25; range: 0-60) days and 21 (15, 29.5; range: 2-63) days, respectively. The median time from symptom onset to oesophageal fistula diagnosis was 3 (1, 9; range: 0-42) days. The most common initial symptom was fever (59.3%). The diagnosis was established by chest computed tomography in 80.2% of patients. Oesophageal surgery was performed in 47.4% and direct endoscopic treatment in 19.8%, and conservative treatment in 32.8% of patients. The overall mortality was 65.8%. Mortality following surgical (51.9%) or endoscopic treatment (56.5%) was significantly lower as compared to conservative management (89.5%) (odds ratio 7.463 (2.414, 23.072) p<0.001). CONCLUSIONS Oesophageal fistula after catheter ablation of atrial fibrillation is rare and occurs mostly with the use of radiofrequency energy rather than cryoenergy. Mortality without surgical or endoscopic intervention is exceedingly high

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016
    • 

    corecore